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The secondary Steenrod algebra A(2) of Baues

Let A = Steenrod algebra at a prime p.

Theorem (Baues (2006), Baues and Jibladze (2004))

There exists a “secondary Steenrod algebra” A(2)

ΣA //
ι // B1

∂ // B0
// // A

B0-bimodule algebra

This computes 3-fold Massey products ≈ the d2 differential in the ASS.

Given a · b = 0, b · c = 0 in A:

first lift to B0: ã · b̃ = ∂r , b̃ · c̃ = ∂s

then 〈a, b, c〉 3 ι−1 (r · c̃ − ã · s) ∈ ΣA.
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Theorem (N. (2012): smaller & more explicit model of A(2) )

Model for secondary Steenrod algebra for p = 2:

ΣA // // D1
∂ // D0

// // A

D0 = Z/4Z{Sq(R)} ⊕
∑⊕

0≤k<l
Z/2Z{Yk,lSq(R)}

D0 represents formal power series modulo 4 under composition

f (x) =
∑

ξkx
2k +

∑
0≤k<l

2ξk,lx
2k+2l

Yk,l dual to x2k+2l , relations Sq(R)Yk,l =
∑

i ,j Yk+i ,l+jSq(R −∆i −∆j)

Yk,l =

{
Yl ,k (l < k),

2Sq(∆k+1) (l = k).
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Theorem (N. (2012): smaller & more explicit model of A(2) (ctd.))

D1 = ΣA⊕ µ0ΣA⊕
∑⊕

0≤k<l
Z/2Z{Uk,lSq(R)}

with ∂µ0 = 2, ∂Uk,l = Yk,l , Sq(R)µ0 = µ0Sq(R) + Sq(R −∆1),

Sq(R)Uk,l =
∑
i ,j

Uk+i ,l+jSq(R −∆i −∆j)

with

Uk,l =

{
Ul ,k + Sq(∆k + ∆l) (l < k),

µ0Sq(∆k+1) + Sq(2∆k) (l = k).

The Uk,l come from a formal power series f2(x , y) in 2 variables:

Yk,l ↔ x2k+2l Uk,l ↔ x2ky2l

A second variable is required since Uk,l 6= Ul ,k
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What does (D0,D1) represent?

Naive idea:

f1(x) looks roughly like a strict isomorphism between p-typical formal
group laws F , G (modulo I 2), so

D0 : f1(x) f1(x +F y) = f1(x) +G f1(y)

D1 : f2(x , y) f2(x , y) =???

This explains f1(x) but creates an impossible riddle for f2(x , y).
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What does (D0,D1) represent?

Not-so-naive-but-crazy idea:

f1(x) is a “homomorphism up to homotopy” between two “formal groups
up to homotopy” F and G . f2(x , y) is the homotopy.

“ f1(x +F y) = f1(x) +G f1(y) +G ∂f2(x , y) ”

The ∂ is not to be taken literally. The suggestion is that (f1, f2) behave
formally like a homomorphism up to homotopy.

Higher order cohomology operations might require fr (x1, . . . , xr ) for r > 2,
e.g.

“ f2(x +F y , z) = f2(x , y +F z) +G ∂f3(x , y , z) ”

The hypothetical (f1, f2, f3, . . .) represents a homomorphism up to all
higher coherence homotopies.
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Fantasy: formal groups up to homotopy

Higher order Steenrod algebras A(2), A(3), . . . can be related to a moduli
space MhFG of formal groups up to (coherent) homotopies. They can not
be directly related to the moduli spaceMFG of ordinary formal group laws.

A(2)

++

MFG∼
htpy equiv.ssA(3) //MhFG

A(4)

33

...

Being wobbly, free and homotopical is the natural, preferred state of a
formal group law.

Every place in maths that uses formal groups should really use formal
groups up to homotopy.
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Fantasy: old vs. new style chromatic homotopy theory

Call for a revolution:

Old style chromatic
homotopy theory

a.k.a.

“The cult of MU”

formal groups

Chromatic homotopy
theory done right

formal groups
up to homotopy
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Fantasy: old vs. new style chromatic homotopy theory

The revolution has already taken place: join the Fellowship of Mξ !

Old style chromatic
homotopy theory

a.k.a.

“The cult of MU”

formal groups

Mξ
a.k.a.

Chromatic homotopy
theory done right

formal groups
up to homotopy
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Thm/Def (Baker and Richter (2008))

Mξ
def
= Thom (ΩΣCP∞ // BU)

Mξ is a complex-oriented, non-commutative A∞ ring spectrum with a
multiplicative map Mξ → MU.

Mξ(p) = BP⊗ free BP∗-module

Mξ defines the same Adams spectral sequence as MU from E2 onwards:

(EMξ
r , dr ) = (EMU

r , dr ) (r ≥ 2)

EMU
1 can be understood as the nerve of the category/groupoid of formal

groups and their isomorphisms. That groupoid defines MFG .

EMξ
1 has currently no such interpretation since the Mξ-cooperations do

not constitute a Hopf algebroid.

Q: can EMξ
1 be understood as a quasi-category? It should define MhFG .
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Hopf-algebroids in topology
The Hopf-algebroid for a ring spectrum E has

Ob = SpecE∗, Mor = SpecE∗E

with identity and composition

id : Ob→ Mor comp : Mor×Ob Mor→ Mor

defined via ε, Φ below:

E∗
//// E∗Eε

oo ////
//

π∗ (E ∧ E ∧ E )oooo

E∗E ⊗E∗ E∗E

Φ ∼=
OO

Both ε and Φ are non-multiplicative if E is non-commutative, so neither id
nor comp can be defined (N. (2002)).
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So: what are formal groups up to homotopy?

From the hypothetical identification of Mξ with a theory of formal groups
up to homotopy we get a conjectural partial answer, resp. a different
perspective on the question:

1. Over a commutative base ring R the homotopies play no role. A
homotopical FG over R is the same as a classical FG over R.

2. Over a non-commutative base ring R there is no classical notion of a
formal group over R. Conjecture: Mξ can be used to define formal groups
over non-commutative R, but the theory of such formal groups will be
substantially homotopical.
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